

Dott. Marco Bergamini

Università degli Studi di Brescia

Oncologia Medica ASST Spedali Civili di Brescia

Sistema Socio Sanitario Regione Lombardia ASST Spedali Civili

Metastasi ossee e tumore della prostata: ruolo degli ARSI e dei PARP-inhibitors - loro impatto sull'osso e sul dolore

CORSO SOCIETÀ ITALIANA DI OSTEONCOLOGIA - ISO 23 APRILE 2024 ROMA ISTITUTO DI STORIA DELLA MEDICINA QUALI STRATEGIE TERAPEUTICHE E QUALI NOVITÀ NELLA GESTIONE DELLE METASTASI OSSEE

RESPONSABILI SCIENTIFICI: G. LANZETTA - T. IBRAHIM - D. SANTINI

INTRODUCTION

Bone is the most common site of spread of metastatic prostate cancer ¹.

The volume of bone metastases correlates with **survival**².

Bone metastases are an important cause of morbidity.

Skeletal related events (**SREs**): pathologic fractures, spinal cord compression, need for surgery or radiation therapy to bone, hypercalcemia ³.

Time to SREs is an important prognostic marker in metastatic prostate cancer ⁴.

- 1. Gralow JR, J Natl Compr Canc Netw 2009
- 2. Sweeney CJ, NWJM 2015
- 3. Saylor PJ, JCO 2011
- 4. Sathiakumar N, Prostate Cancer Prostatic Dis 2011

INTRODUCTION

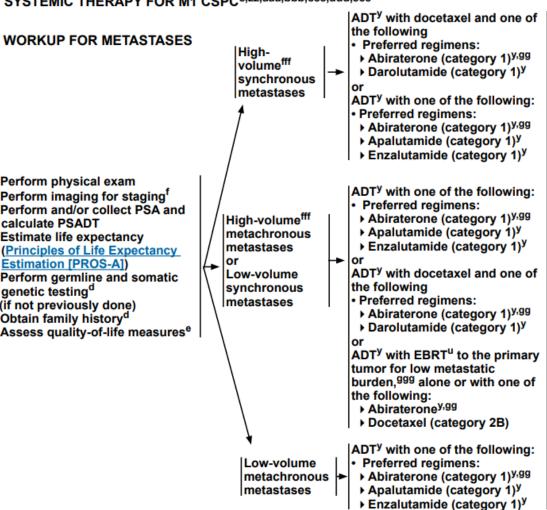
In 2008, the Prostate Cancer Clinical Trials Working Group 2 (**PCWG2**) identified the following key unmet needs: delaying time to SREs and delaying time to onset of significant pain ¹.

In 2015, the PCWG3 identified the reduction in the frequency of SREs as an approvable end point of prostate cancer clinical trials ².

The use of bone scintigraphy as the standard for **bone imaging** is retained in PCWG3².

It is difficult to interpret the clinical significance of changes in size or intensity of bone metastases on bone scan.

Positron emission tomography (PET) imaging, whole-body magnetic resonance imaging (WB-MRI) and other modalities that are in use to image bone should be approached as new biomarkers subject to independent validation ².


1. Scher H., JCO 2008

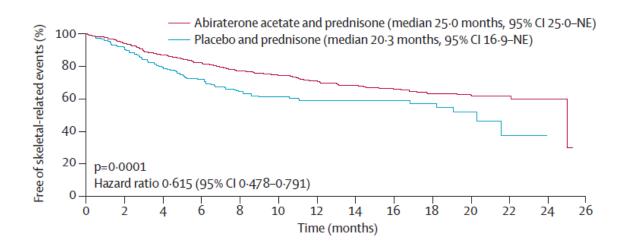
2. Scher H., JCO 2016

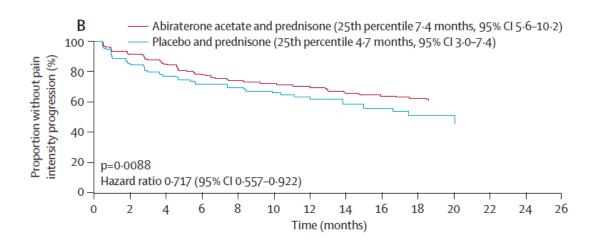
ARS

SYSTEMIC THERAPY FOR M1 CSPC^{c,zz,aaa,bbb,ccc,ddd,eee}

(a)								
Treatment		Haza	rd ratio	HR	95% CI	Weight	P score	
Apalutamide + ADT Enzalutamide + ADT Abiraterone + ADT Abiraterone + docetaxel + ADT Docetaxel + ADT ADT	0.3	0.5		0.55 0.68 0.75	(0.34; 0.79) (0.39; 0.77) (0.50; 0.91) (0.43; 1.31) (0.73; 1.13)	20.7% 23.0% 11.8%	0.85 0.81 0.58 0.46 0.22 0.07	 Perform pl Perform in Perform ar calculate F Estimate li
(b) Treatment		Haza	rd ratio	HR	95% CI	Weight	P score	(Principles Estimation Perform ge
Abiraterone + docetaxel + ADT Abiraterone + ADT Apalutamide + ADT Enzalutamide + ADT Docetaxel + ADT ADT	0.3	0.5		0.61 0.70 0.71	(0.38; 0.71) (0.53; 0.71) (0.56; 0.88) (0.59; 0.85) (0.63; 0.84)	8.6% 27.7% 14.6% 21.1%	0.94 0.77 0.48 0.44 0.38 0.00	genetic tes (if not prev • Obtain fam • Assess qu
	Mano	del P. Eu	r Urol Foo	cus 2023				

NCCN guidelines 2024

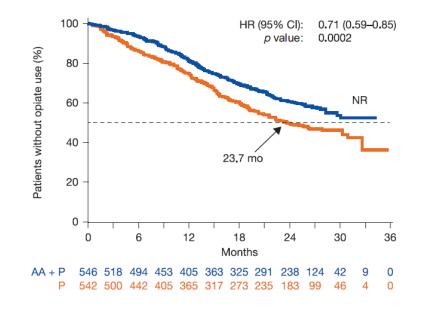

ABIRATERONE - mCRPC


Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial

Christopher J Logothetis, Ethan Basch, Arturo Molina, Karim Fizazi, Scott A North, Kim N Chi, Robert J Jones, Oscar B Goodman, Paul N Mainwaring, Cora N Sternberg, Eleni Efstathiou, Dennis D Gagnon, Margaret Rothman, Yanni Hao, Cameron S Liu, Thian S Kheoh, Christopher M Haga, Howard I Scher^{*}, Johann S de Bono^{*}

Disease location		
Bone	710/797 <u>(89·1%)</u>	358/398 (<mark>89·9%)</mark>
Node	361/797 (45.3%)	164/398 (41·2%)
Liver	89/797 (11·2%)	29/398 (7·3%)

	SRE rate per 100 patients-years of exposure	<u>38·9%</u>	65.1%
	Radiation to bone (%)	24.0%	46.1%
1	Pathological fracture (%)	<mark>6.0%</mark>	<u>4.0%</u>
	Surgery to bone (%)	1.7%	1.0%
	Spinal cord compression (%)	7.3%	14.0%


ABIRATERONE - mCRPC

Updated Interim Efficacy Analysis and Long-term Safety of Abiraterone Acetate in Metastatic Castration-resistant Prostate Cancer Patients Without Prior Chemotherapy (COU-AA-302)

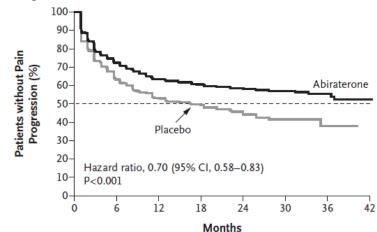
Dana E. Rathkopf^{a,*}, Matthew R. Smith^b, Johann S. de Bono^c, Christopher J. Logothetis^d, Neal D. Shore^e, Paul de Souza^f, Karim Fizazi^g, Peter F.A. Mulders^h, Paul Mainwaringⁱ, John D. Hainsworth^j, Tomasz M. Beer^k, Scott North¹, Yves Fradet^m, Hendrik Van Poppelⁿ, Joan Carles^o, Thomas W. Flaig^p, Eleni Efstathiou^d, Evan Y. Yu^q, Celestia S. Higano^q, Mary-Ellen Taplin^r, Thomas W. Griffin^s, Mary B. Todd^t, Margaret K. Yu^s, Youn C. Park^t, Thian Kheoh^s, Eric J. Small^u, Howard I. Scher^a, Arturo Molina^v, Charles J. Ryan^u, Fred Saad^w

Bone metastases	452 (83)	432(80)	
>10	264 (49)	253 (47)	

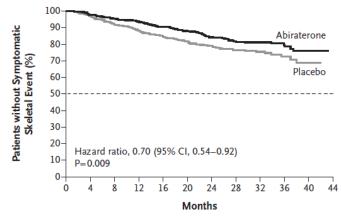
PRO end points	Abiraterone plus prednisone, n = 546	Prednisone alone, n = 542	Hazard ratio [*] (95% CI)	p value [†]
Median time to pain progression, mo				
Mean pain intensity [‡]	26.7	18.4	0.83 (0.68-1.01)	0.06
Pain interference ^{###}	10.3	7.4	0.80 (0.68-0.93)	0.005
Worst pain intensity [‡] (prespecified analysis)	25.8	20.3	0.85 (0.69-1.04)	0.1

ABIRATERONE - mHSPC

ORIGINAL ARTICLE


Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer

Karim Fizazi, M.D., Ph.D., NamPhuong Tran, M.D., Luis Fein, M.D., Nobuaki Matsubara, M.D., Alfredo Rodriguez-Antolin, M.D., Ph.D., Boris Y. Alekseev, M.D., Mustafa Özgüroğlu, M.D., Dingwei Ye, M.D.,
Susan Feyerabend, M.D., Andrew Protheroe, M.D., Ph.D., Peter De Porre, M.D., Thian Kheoh, Ph.D., Youn C. Park, Ph.D., Mary B. Todd, D.O., and Kim N. Chi, M.D., for the LATITUDE Investigators*


n	596	600
Bone	580 (97)	585 (98)
Liver	32 (5)	30 (5)
Lungs	73 (12)	72 (12)
Node	283 (47)	287 (48)
Prostate mass	151 (25)	154 (26)
Viscera	18 (3)	13 (2)
Soft tissue	9 (2)	15 (3)
Other	2 (0.3)	0

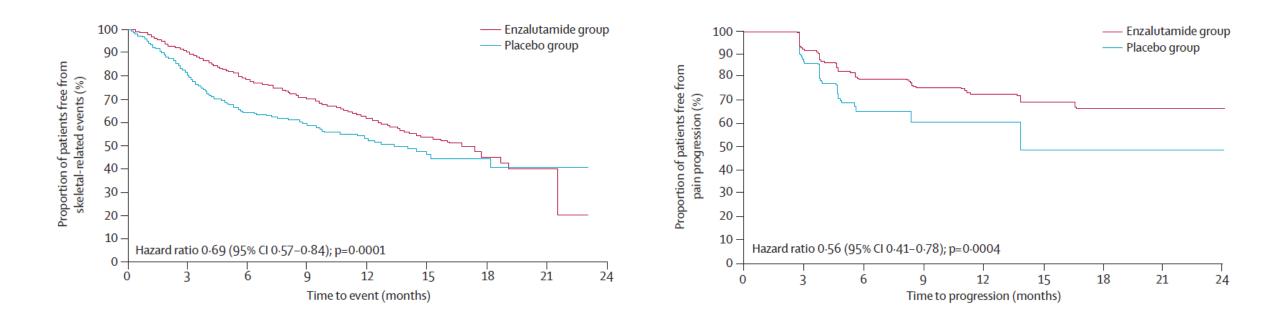
	End Point	Abiraterone Group (N=597)	Placebo Group (N=602)	Hazard Ratio (95% CI)	P Value†
	Secondary end points				
\rightarrow	Median time to pain progression (mo)	NR	16.6	0.70 (0.58–0.83)	< 0.001
	Median time to PSA progression (mo)	33.2	7.4	0.30 (0.26–0.35)	< 0.001
	Median time to next symptomatic skel- etal event (mo)	NR	NR	0.70 (0.54–0.92)	0.009

ABIRATERONE - mHSPC

Abiraterone in "High-" and "Low-risk" Metastatic Hormone-sensitive Prostate Cancer

Alex P. Hoyle^{*a,b*}, Adnan Ali^{*a*}, Nicholas D. James^{*c*}, Adrian Cook^{*d*}, Christopher C. Parker^{*e*}, Johann S. de Bono^{*e*}, Gerhardt Attard^{*f*}, Simon Chowdhury^{*g*}, William R. Cross^{*h*}, David P. Dearnaley^{*i*}, Christopher D. Brawley^{*d*}, Clare Gilson^{*d*}, Fiona Ingleby^{*e*}, Silke Gillessen^{*j,k,l,m*}, Daniel M. Aebersold^{*n*}, Rob J. Jones^{*o,p*}, David Matheson^{*q,1*}, Robin Millman^{*r,1*}, Malcolm D. Mason^{*s*}, Alastair W.S. Ritchie^{*e*}, Martin Russell^{*o,p*}, Hassan Douis^{*c*}, Mahesh K.B. Parmar^{*d*}, Matthew R. Sydes^{*d*}, Noel W. Clarke^{*a,b,**} on behalf of the STAMPEDE Investigators²

STAMPEDE abiraterone LATITUDE criteria (All M1 patients)	ADT Alone ADT + AAP			
	No. of events/ No. of patients	Adjusted HR (95% CI)		Interaction between metastatic subgroups p value
Skeletal-related events				
	Overall 164/452 93/449		0.47 (0.36–0.60)	
	Low 49/220 17/208	▶	0.31 (0.18–0.54)	
	High 115/232 76/241	⊢	0.48 (0.36–0.64)	0.21

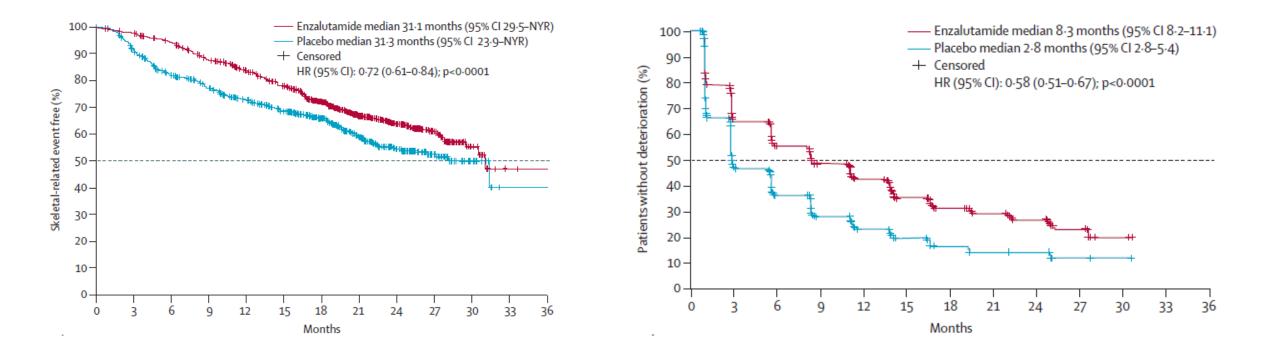

STAMPEDE abiraterone CHAARTED criteria (All M1 patients)	ADT Alone ADT + AAP			
	No. of events/ No. of patients	Adjusted HR (95% CI)		Interaction between metastatic subgroups p value
Skeletal-related events				
	Overall 164/452 93/449		0.47 (0.36—0.60)	
	Low 46/196 25/206	⊢−−−− −	0.46 (0.28—0.75)	
	High 118/256 68/243		0.47 (0.35—0.63)	0.98

ENZALUTAMIDE - mCRPC

Effect of enzalutamide on time to first skeletal-related event, pain, and quality of life in men with castration-resistant prostate cancer: results from the randomised, phase 3 AFFIRM trial

Karim Fizazi, Howard I Scher, Kurt Miller, Ethan Basch, Cora N Sternberg, David Cella, David Forer, Mohammad Hirmand, Johann S de Bono

Bone metastases at screening		
0	70 (9%)	35 (9%)
1	28 (4%)	21 (5%)
2–4	112 (14%)	45 (11%)
5-9	121 (15%)	68 (17%)
10–20	167 (21%)	79 (20%)
>20	302 (38%)	151 (38%)

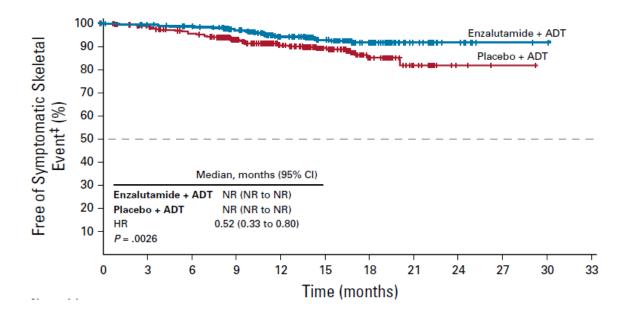


ENZALUTAMIDE - mCRPC

Effect of enzalutamide on health-related quality of life, pain, and skeletal-related events in asymptomatic and minimally symptomatic, chemotherapy-naive patients with metastatic castration-resistant prostate cancer (PREVAIL): results from a randomised, phase 3 trial

Yohann Loriot, Kurt Miller, Cora N Sternberg, Karim Fizazi, Johann S De Bono, Simon Chowdhury, Celestia S Higano, Sarah Noonberg, Stefan Holmstrom, Harry Mansbach, Frank G Perabo, De Phung, Cristina Ivanescu, Konstantina Skaltsa, Tomasz M Beer, Bertrand Tombal

Distribution of disease at screening – no. (%)		
Bone	741 (85.0)	690 <u>(81.7)</u>
Lymph node	437 (50.1)	434 (51.4)
Visceral disease (lung or liver)	98 (11.2)	106 (12.5)
Visceral liver	40 (4.6)	34 (4.0)
Visceral lung	64 (7.3)	75 (8.9)
Visceral lung and liver	6 (0.7)	3 (0.4)
Other soft tissue†	113 (13.0)	105 (12.4)



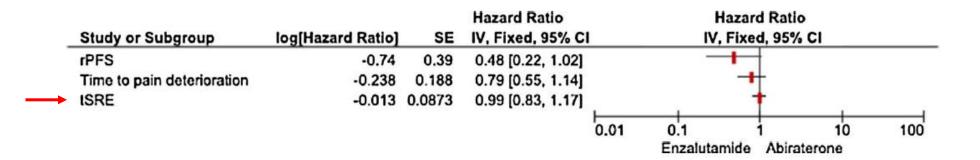
ENZALUTAMIDE - mHSPC

ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer

Andrew J. Armstrong, MD, ScM¹; Russell Z. Szmulewitz, MD²; Daniel P. Petrylak, MD³; Jeffrey Holzbeierlein, MD⁴; Arnauld Villers, MD⁵; Arun Azad, MBBS, PhD⁶; Antonio Alcaraz, MD, PhD⁷; Boris Alekseev, MD⁸; Taro Iguchi, MD, PhD⁹; Neal D. Shore, MD¹⁰; Brad Rosbrook, MS¹¹; Jennifer Sugg, MS¹²; Benoit Baron, MS¹³; Lucy Chen, MD¹²; and Arnulf Stenzl, MD¹⁴

Bone only	268 (46.7)	245 (42.5)
Soft tissue only	51 (8.9)	45 (7.8)
Bone and soft tissue	217 (37.8)	241 (41.8)

\rightarrow	Fractures	37 (<mark>6.5</mark>)	6 (1.0)	24 (4.2)	6 (1.0)

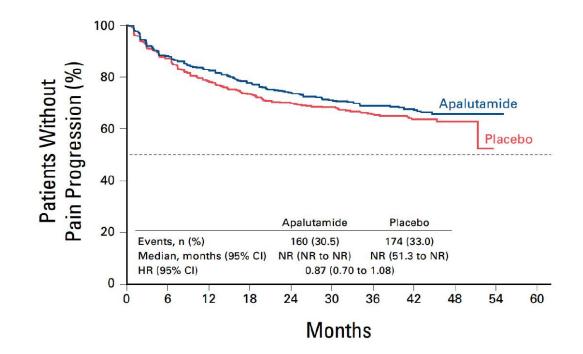

ENZALUTAMIDE vs ABIRATERONE - mCRPC

bone radiological progression free survival in castration resistant prostate cancer patients: An indirect comparison of randomized controlled trials

Sergio Rizzo^{a,1}, Antonio Galvano^{a,1}, Francesco Pantano^b, Michele Iuliani^b, Bruno Vincenzi^b, Francesco Passiglia^a, Silvia Spoto^c, Giuseppe Tonini^b, Viviana Bazan^a, Antonio Russo^{a,2,*}, Daniele Santini^{b,2}

Two new drugs, the CYP17 inhibitor abiraterone acetate and the androgen receptor (AR) antagonist enzalutamide, have recently shown to prolong OS prior chemotherapy or in docetaxel treated mCRPC patients, using steroidal therapy or placebo as control group. Updated analyses underlined the role of these new agents on two prostate-specific endpoints as radiographic progression-free survival (rPFS) and time to first skeletalrelated event (tSRE). On the basis of these reports, we made an indirect comparison between abiraterone and enzalutamide. We obtained a clinically but not significant difference favouring enzalutamide over abiraterone in terms of rPFS (HR 0.48, 95% CI 0.22–1.02). No significant difference was shown in term of tSRE (HR 0.99, 95% CI 0.83–1.17). In conclusion, abiraterone and enzalutamide have both demonstrated to significantly delay the bone progression resulting in similar improvements in bone-related endpoints in patients with mCRPC.

APALUTAMIDE - mHSPC


Apalutamide in Patients With Metastatic Castration-Sensitive Prostate Cancer: Final Survival Analysis of the Randomized, Double-Blind, Phase III TITAN Study

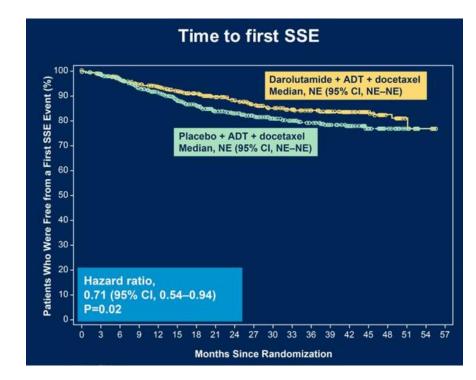
Kim N. Chi, MD¹; Simon Chowdhury, MD, PhD²; Anders Bjartell, MD, PhD³; Byung Ha Chung, MD, PhD⁴; Andrea J. Pereira de Santana Gomes, MD⁵; Robert Given, MD⁶; Alvaro Juárez Soto, MD⁷; Axel S. Merseburger, MD, PhD⁸; Mustafa Özgüroğlu, MD⁹; Hirotsugu Uemura, MD, PhD¹⁰; Dingwei Ye, MD, PhD¹¹; Sabine Brookman-May, MD^{12,13}; Suneel D. Mundle, PhD¹³; Sharon A. McCarthy, BPharm¹³; Julie S. Larsen, PharmD¹⁴; Weili Sun, MD, PhD¹⁴; Katherine B. Bevans, PhD¹⁵; Ke Zhang, PhD¹⁶; Nibedita Bandyopadhyay, PhD¹³; and Neeraj Agarwal, MD¹⁷

100 Skeletal-Related Event (%) Apalutamide 80 Patients Without Placebo 60 40 Apalutamide Placebo 20 Events, n (%) 66 (12.6) 75 (14.2) Median, months (95% CI) NR (NR to NR) NR (51.8 to NR) HR (95% CI) 0.86 (0.62 to 1.19) 0 36 6 12 18 24 30 42 48 54 60 Months

PATIENTS AND INTERVENTIONS

Eligible patients were required to have documented adenocarcinoma of the prostate and distant metastatic disease documented on the basis of at least one lesion on bone scanning, with or without visceral or lymph-node involvement. All the

DAROLUTAMIDE - mHSPC

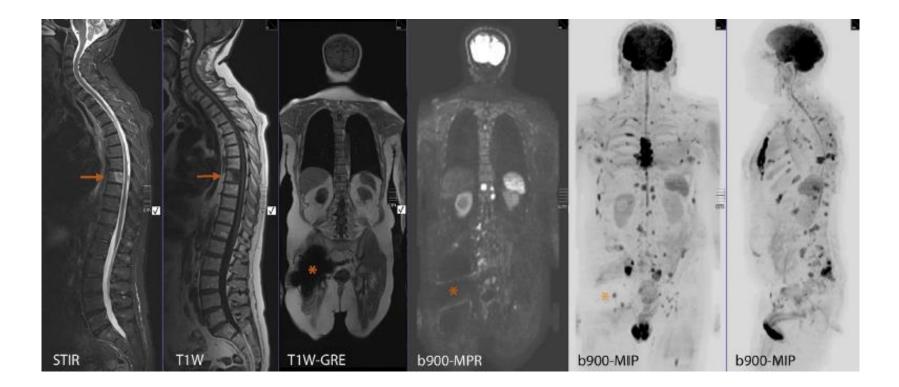

ORIGINAL ARTICLE

Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer

Matthew R. Smith, M.D., Ph.D., Maha Hussain, M.D., Fred Saad, M.D.,
Karim Fizazi, M.D., Ph.D., Cora N. Sternberg, M.D., E. David Crawford, M.D.,
Evgeny Kopyltsov, M.D., Chandler H. Park, M.D., Boris Alekseev, M.D.,
Álvaro Montesa-Pino, M.D., Dingwei Ye, M.D., Francis Parnis, M.B., B.S.,
Felipe Cruz, M.D., Teuvo L.J. Tammela, M.D., Ph.D., Hiroyoshi Suzuki, M.D., Ph.D.,
Tapio Utriainen, M.D., Cheng Fu, M.D., Motohide Uemura, M.D., Ph.D.,
María J. Méndez-Vidal, M.D., Benjamin L. Maughan, M.D., Pharm.D.,
Heikki Joensuu, M.D., Silke Thiele, M.D., Rui Li, M.S., Iris Kuss, M.D.,
and Bertrand Tombal, M.D., Ph.D., for the ARASENS Trial Investigators*

Metastasis stage at screening - no. (%)

M1a, nonregional lymph-node metastases only	23 (3.5)	16 (2.4)
M1L bone metastases with or without lymph-node metastases	517 (<u>79.4)</u>	520 (79.5)
M1c, visceral metastases with or without lymph-node or bone metastases	111 (17.1)	118 (18.0)


	End Point		ADT–Docetaxel 651)†		\DT–Docetaxel =654)†	Hazard Ratio (95% CI)	P Value
		Median	Patients with Event	Median	Patients with Event		
		то	no. (%)	то	no. (%)		
	Time to castration-resistant prostate cancer	NR	225 (35)	19.1	391 (60)	0.36 (0.30-0.42)	<0.001
►	Time to pain progression	NR	222 (34)	27.5	248 (38)	0.79 (0.66–0.95)	0.01
►	Symptomatic skeletal event-free survival	51.2	257 (40)	39.7	329 (50)	0.61 (0.52-0.72)	< 0.001
►	Time to first symptomatic skeletal event	NR	95 (15)	NR	108 (17)	0.71 (0.54–0.94)	0.02

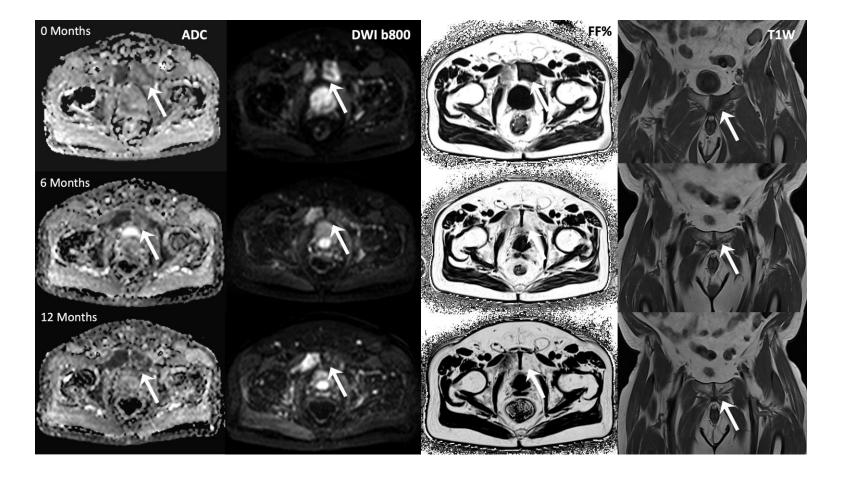
Evaluation of bone metastasis in metastatic prostate cancer remains a clinical challenge.

CT scan and **bone scan** are not suitable for the evaluation of bone tumor response to systemic antineoplastic treatments because of their inability to measure metastatic extent in bone and detect bone repair inside osteoblastic lesions ¹.

Whole-body diffusion-weighted magnetic resonance imaging (**WB-DW-MRI**) offers significant advantages with respect to conventional imaging, as it does identify bone marrow infiltration, tumor necrosis induced by treatment and bone marrow restoration ^{2,3}.

- 1. Berruti A., Br J Cancer 1996
- 2. Mosavi F., AJR Am J Roentgenol. 2012
- 3. Padhani AR., J Magn Reson Imaging 2014

SE = 99% SP = 98% PPV = 98% NPV = 96% Accuracy = 98%

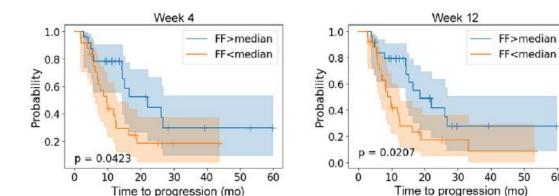

Parameters for bone response assessment³ DWI = diffusion weighted imaging ADC = apparent diffusion coeffcient FF% = fat fraction

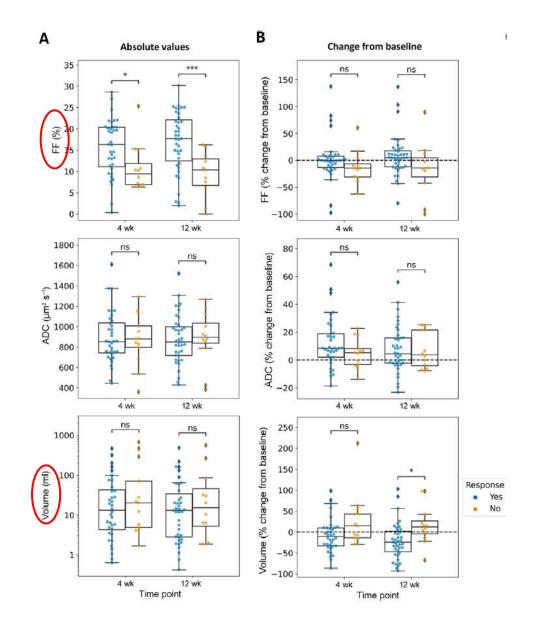
ADC

nDWI

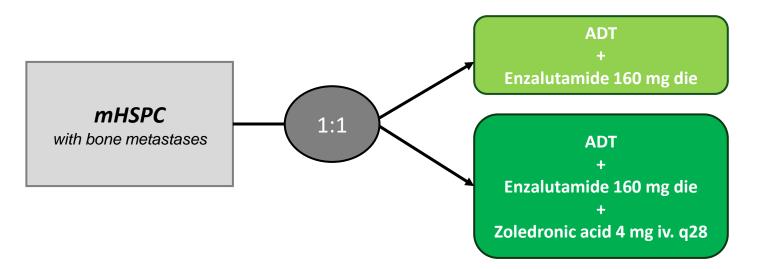
FF%

Example of a complete response on a bone lesion by WB-DW-MRI

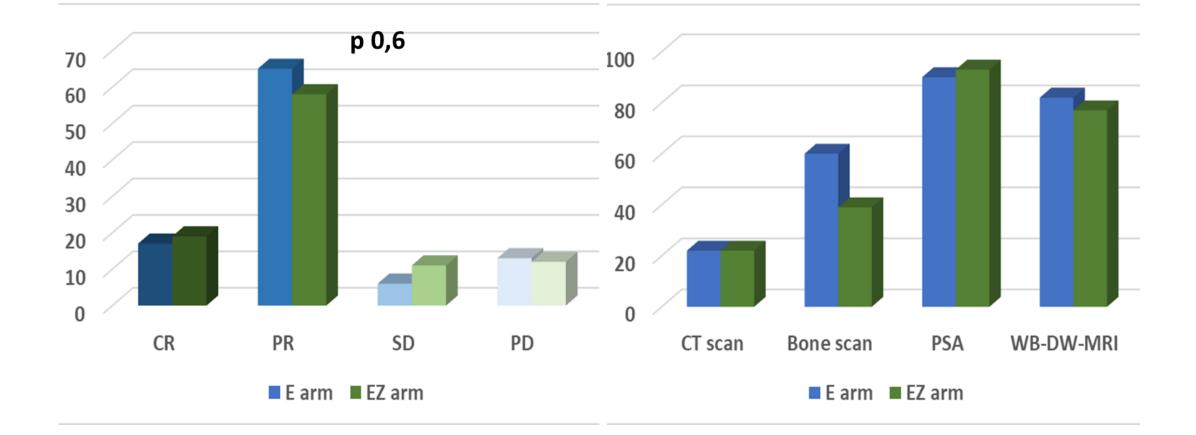

BONE RESPONSE ASSESSMENT - mCRPC


60

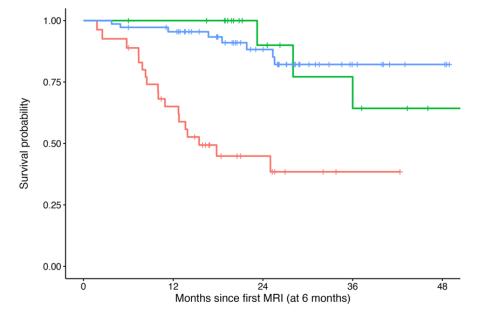
Research Letter


Whole-body Magnetic Resonance Imaging as a Treatment Response **Biomarker in Castration-resistant Prostate Cancer with Bone Metastases: The iPROMET Clinical Trial**

Alonso Garcia-Ruiz^a, Carlos Macarro^a, Francesca Zacchi^{a,b,c}, Rafael Morales-Barrera^{a,b}, Francesco Grussu^a, Irene Casanova-Salas^a, Francesco Sanguedolce^{d,e}, Macarena Gonzalez^{a,b}, Pablo Cresta-Morgado^{*a,b*}, Matias de Albert^{*b*}, Josep Garcia-Bennett^{*f*}, David Marmolejo^{*a,b*}, Jacques Planas^b, Sarai Roche^b, Richard Mast^b, Christina Zatse^a, Josep M Piulats^{f,g}, Bernardo Herrera-Imbroda^h, Lucas Regis^b, Laura Agundez^a, David Olmosⁱ, Nahum Calvo^f, Manuel Escobar^b, Joan Carles^{a,b}, Joaquin Mateo^{a,b,*}, Raquel Perez-Lopez^{a,*}



BONE RESPONSE ASSESSMENT - mHSPC


- Metastatic hormone-sensitive prostate cancer (mHSPC) with bone metastases
- Randomization 1:1 to enzalutamide vs enzalutamide + zoledronic acid
- Disease response assessment by WB-DW-MRI, CT scan and PSA at baseline and after 6-12 months, by bone scan at baseline and after 12 months
- Primary objective
 - Bone objective response rate (ORR) assessed by WB-DW-MRI
- Secondary objectives
 - Changes of bone health and body composition parameters assessed by dual energy X-ray absorptiometry (DXA) scan
 - Changes of bone metabolism markers
 - o Quality of life (QoL)
 - Progression-free survival (PFS), overall survival (OS)

BONE RESPONSE ASSESSMENT - mHSPC

BONE RESPONSE ASSESSMENT - mHSPC

"The corresponding response rates obtained in the 109 evaluable patients were 18.3% (CR), 62.4% (PR), 8.3% (SD), and 11% (PD). The overall response rate was 81% (95% CI: 73.6%-88.4%)."

"The clinical relevance of bone responses at WB-DW-MRI was reinforced by a significant association with overall survival within the PP population: complete response at WB-DW-MRI correlated with a reduced risk of death (HR 0.16; 95%CI 0.06-0.48; p<0.001) as well as partial response (HR 0.14; 95%CI 0.06-0.32; p<0.001), with respect to no response (CR/PR vs SD/PD: HR 0.15, 95% CI 0.07-0.30, p<0.001)."

Eur Urol, under submission

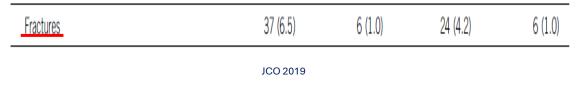
Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial

Christopher J Logothetis, Ethan Basch, Arturo Molina, Karim Fizazi, Scott A North, Kim N Chi, Robert J Jones, Oscar B Goodman, Paul N Mainwaring, Cora N Sternberg, Eleni Efstathiou, Dennis D Gagnon, Margaret Rothman, Yanni Hao, Cameron S Liu, Thian S Kheoh, Christopher M Haqq, Howard I Scher*, Johann S de Bono*

SRE rate per 100 patients-years of exposure (%)*	38.9%	65.1%
Radiation to bone (%)	24.0%	46.1%
Pathological fracture (%)	6.0%	4.0%
Surgery to bone (%)	1.7%	1.0%
Spinal cord compression (%)	7.3%	14.0%

Lancet Oncology 2012

for the TITAN Investigators*



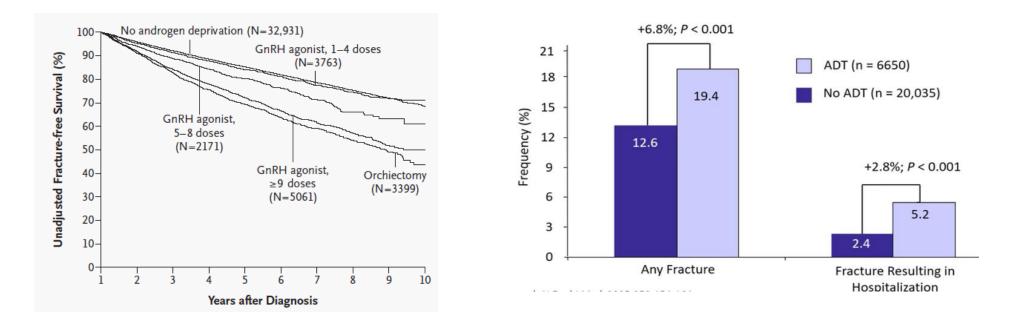
33 (6.3) 7 (1.3) 24 (4.6) 4 (0.8)

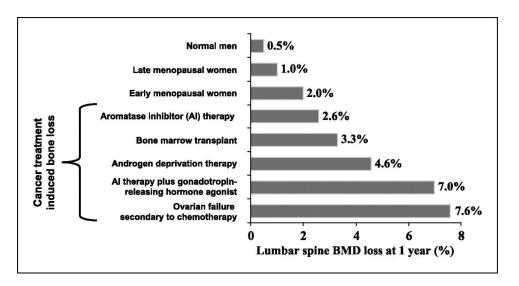
NEJM 2019

ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer

Andrew J. Armstrong, MD, ScM¹; Russell Z. Szmulewitz, MD²; Daniel P. Petrylak, MD³; Jeffrey Holzbeierlein, MD⁴; Arnauld Villers, MD⁵; Arun Azad, MBBS, PhD⁶; Antonio Alcaraz, MD, PhD⁷; Boris Alekseev, MD⁹; Taro Iguchi, MD, PhD⁹ Neal D. Shore, MD¹⁰; Brad Rosbrook, MS¹⁺J, Jennifer Sugg, MS²⁺; Benoit Baron, MS¹⁺2; Lucy Chen, MD¹²; and Arnulf Sterzl, MD¹⁴

ORIGINAL ARTICLE Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer Matthew R. Smith, M.D., Ph.D., Maha Hussain, M.D., Fred Saad, M.D., Karim Fizazi, M.D., Ph.D., Cora N. Sternberg, M.D., E. David Crawford, M.D., Evgeny Kopyltsov, M.D., Chandler H. Park, M.D., Boris Alekseev, M.D., Alvaro Montesa-Pino, M.D., Dingwei Ye, M.D., Francis Parnis, M.B., B.S., Felipe Cruz, M.D., Teuvo L.J. Tammela, M.D., Ph.D., Hiroyoshi Suzuki, M.D., Ph.D., Tapio Utriainen, M.D., Cheng Fu, M.D., Motohide Uemura, M.D., Ph.D., María J. Méndez-Vidal, M.D., Benjamin L. Maughan, M.D., Pharm.D., Heikki Joensuu, M.D., Silke Thiele, M.D., Rui Li, M.S., Iris Kuss, M.D., and Bertrand Tombal, M.D., Ph.D., for the ARASENS Trial Investigators*


Bone fracture [¶]	49 (7.5)	2.8	33 (5.1)	2.7


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Risk of Fracture after Androgen Deprivation for Prostate Cancer

Vahakn B. Shahinian, M.D., Yong-Fang Kuo, Ph.D., Jean L. Freeman, Ph.D., and James S. Goodwin, M.D.

Clinical Cancer Research

Angela Hirbe et al. Clin Cancer Res 2006;12:6309s-6314s

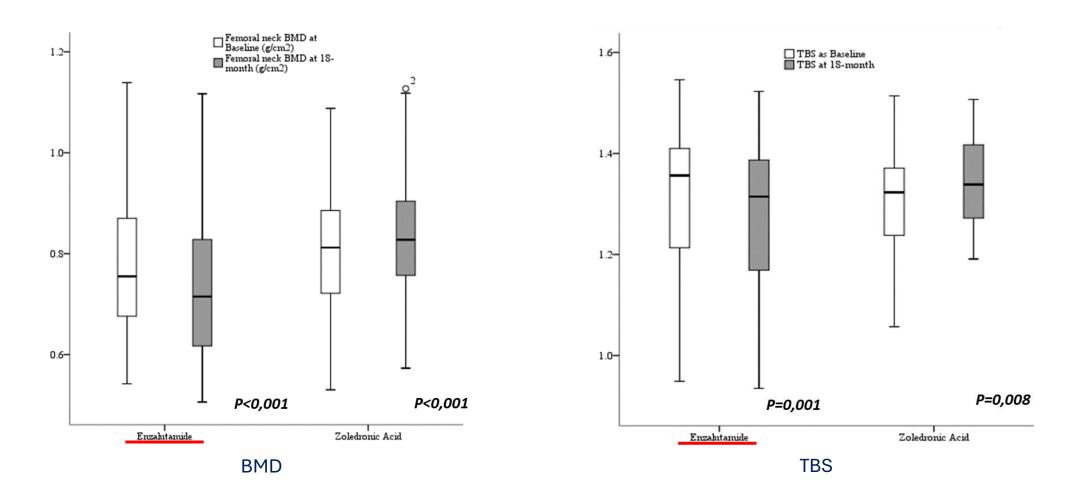
J. Clin. Med. 2019, 8, 113; doi:10.3390/jcm8010113

Article

Effect of Androgen-Deprivation Therapy on Bone Mineral Density in Patients with Prostate Cancer: A Systematic Review and Meta-Analysis

Do Kyung Kim ¹⁽²⁾, Joo Yong Lee ²⁽³⁾, Kwang Joon Kim ³, Namki Hong ⁴, Jong Won Kim ², Yoon Soo Hah ¹⁽²⁾, Kyo Chul Koo ¹, Jae Heon Kim ⁵ and Kang Su Cho ¹,*⁽³⁾

A. Lumbar spine


	1	DT		Co	ontrol	Ľ		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Control: PCa									Constant Constant
Alibhai 2013	-2.12	7.2	80	1.05	4.7	80	24.2%	-3.17 [-5.05, -1.29]	
Morote 2006	-4.8	5	31	-0.82	4.7	31	22.9%	-3.98 [-6.40, -1.56]	
Subtotal (95% CI)			111			111	47.1%	-3.48 [-4.96, -1.99]	•
Heterogeneity: Tau ² =	= 0.00; Ch	ni² = 0	.27, df	= 1 (P =	0.60); I ² = 0	96		
Test for overall effect	Z = 4.59	(P <	0.0000	1)					
Control: PCa or other	urologic	cond	litions						
Preston 2002	-0.2	0.8	39	1.1	0.6	39	26.5%	-1.30 [-1.61, -0.99]	•
Ziaran 2013	-13.28	1.8	95	-7.32	1.7	88	26.4%	-5.96 [-6.47, -5.45]	
Subtotal (95% CI)			134			127	52.9%	-3.63 [-8.19, 0.94]	
Heterogeneity: Tau ² =	= 10.81; C	hi² =	234.54	, df = 1	(P < 1	0.0000	1); I ² = 10	0%	
Test for overall effect	Z = 1.56	(P =	0.12)						
Total (95% CI)			245			238	100.0%	-3.60 [-6.72, -0.47]	•
Heterogeneity: Tau ² =	9.58; Ch	ni² = 2	36.13,	df = 3 (8	P < 0.	00001	; I ² = 999	6	-20 -10 0 10 2
Test for overall effect	Z = 2.25	(P =	0.02)						The second se
Test for subaroup dif	forences	Chiz	- 0.00	df = 1	P = 0	05) P	= 0%		Favours (ADT) Favours (control)

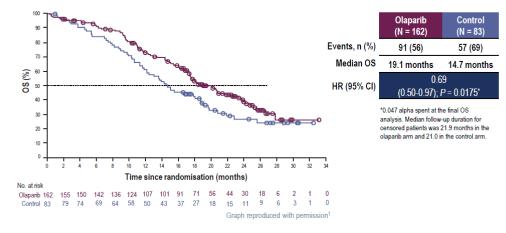
C. Total hip

	1	ADT		Ce	ontrol	E.		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
Control: PCa									
Alibhai 2013	-2.62	4.1	80	-1.02	4	80	24.7%	-1.60 [-2.86, -0.34]	
Morote 2006	-3.76	4.7	31	-0.82	4.4	31	17.1%	-2.94 [-5.21, -0.67]	
Subtotal (95% CI)			111			111	41.7%	-1.92 [-3.05, -0.80]	•
Heterogeneity: Tau ^a =	0.02; C	hi²=	1.03, dt	f=1 (P	= 0.3	1); I ² = 3	3%		
Test for overall effect:	Z = 3.35	(P -	0.0008	3)					
Control: PCa or other	urologic	con	ditions						
Preston 2002	-1.5	1	39	0.8	0.5	39	30.1%	-2.30 [-2.65, -1.95]	•
Ziaran 2013	0	2.7	95	0	2.6	88	28.1%	0.00 [-0.77, 0.77]	
Subtotal (95% CI)			134			127	58.3%	-1.18 [-3.43, 1.08]	-
Heterogeneity: Tau ^a =	2.55; C	hi²=	28.50,	df = 1 (F	< 0.1	00001)	P= 96%		
Test for overall effect.	Z = 1.02	? (P =	0.31)						
Total (95% CI)			245			238	100.0%	-1.59 [-2.99, -0.19]	•
Heterogeneity: Tau ^a =	1.67; C	hi²=	29.53.	df = 3 (F	< 0.1	00001)	: P = 90%		
Test for overall effect.									-4 -2 U Z 4
Test for subgroup diff	ferences	Chi	= 0.34	, df = 1	(P = 1	0.56), P	= 0%		Favours (ADT) Favours (control)

1785P Sistema Socio Sanitario Regione ASST Spedali Civili

Changes in bone mineral density, trabecular bone score and body composition in metastatic hormone-sensitive prostate cancer patients randomized to receive androgen deprivation + enzalutamide +/- zoledronic acid. The BonEnza study.

ARSI

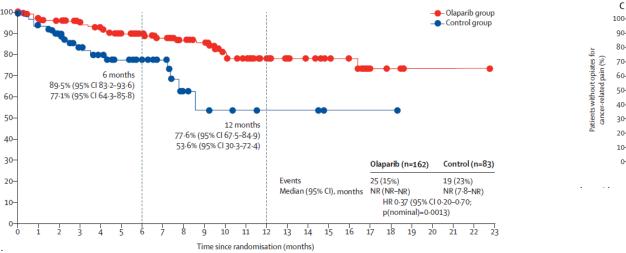

- Androgen receptor signaling inhibitors (ARSI) improve survival outcomes of metastatic prostate cancer patients, both in the castration resistant setting (mCRPC) and in the hormone-sensitive setting (mHSPC)
- ARSI offer significant benefit in terms of **bone response rates**, prevention of skeletal-related events (**SREs**) and **pain relief**
- Caveat: ARSI have a potential impact on bone health, leading to an increased risk of fragility fractures

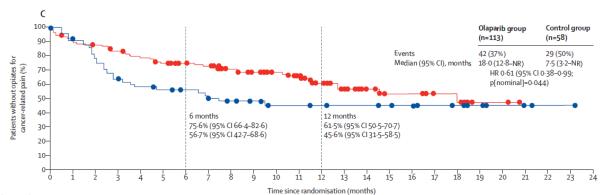
These data support the use of ARSI in the management of advanced prostate cancer with bone metastases

PARP-INHIBITORS

PROfound phase 3 trial: Olaparib improved OS (in cohort A)

BRCA1, BRCA2 and/or ATM mCRPC (final prespecified analysis)


Olaparib should be considered after novel androgen receptor axis inhibitors (with or without prior taxane treatment) for patients with mCRPC and **BRCA1/2 alterations** [I, B; ESMO-MCBS v1.1 score: 3].


OLAPARIB - mCRPC

Pain and health-related quality of life with olaparib versus physician's choice of next-generation hormonal drug in patients with metastatic castration-resistant prostate cancer with homologous recombination repair gene alterations (PROfound): an open-label, randomised, phase 3 trial

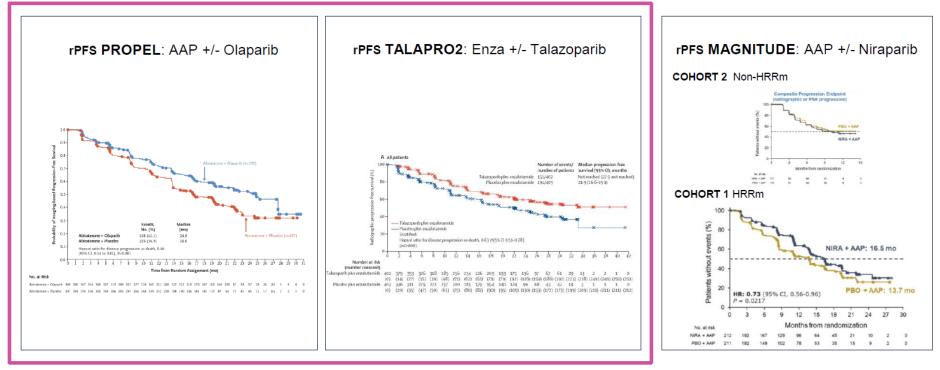
Antoine Thiery-Vuillemin, Johann de Bono, Maha Hussain, Guilhem Roubaud, Giuseppe Procopio, Neal Shore, Karim Fizazi, Gabriel dos Anjos, Gwenaelle Gravis, Jae Young Joung, Nobuaki Matsubara, Daniel Castellano, Arnold Degboe, Chris Gresty, Jinyu Kang, Allison Allen, Christian Poehlein, Fred Saad

Metastases at baseline‡		
Bone only	57 (35%)	23 (28%)
Visceral (lung or liver)	46 (28%)	32 (39%)
Other	49 (30%)	23 (28%)

nt (%)

tswitho

÷


PARP-INHIBITORS + ARSI

ARPi + PARPi trials in 1L mCRPC

(prior ARPi for mHSPC or nmCRPC underrepresented)

rPFS benefit reported in pts unselected for HRR alterations, except in MAGNITUDE

Clarke et al, NEJM Evidence 2022; Agarwal et al, Lancet 2023; Chi et al, JCO 2023

TALAZOPARIB + ENZALUTAMIDE - mCRPC

Article

https://doi.org/10.1038/s41591-023-02704-x

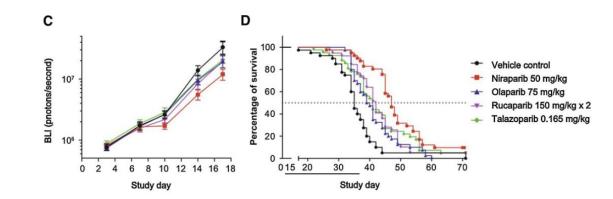
First-line talazoparib with enzalutamide in HRR-deficient metastatic castrationresistant prostate cancer: the phase 3 TALAPRO-2 trial

Disease site		
Bone (including with soft tissue component)	175 <u>(88)</u>	158 (79)
Lymph node	82 (41)	94 (47)
Visceral (lung)	23 (12)	26 (13)
Visceral (liver)	9 (4)	6 (3)
Other soft tissue	23 (12)	20 (10)

	Talazoparib+ Enzalutamide (N=200)	Placebo + Enzalutamide (N=199)	Hazard Ratio	P value (Two-Sided)
Median duration of response* (95% Cl) — mo	20.3 (12.2–NR)	14.8 (6.6–25.8)		
PSA response ≥50%† — n/N (%)	171/198 (86)	125/199 (63)		<0.0001
(95% CI)	(81–91)	(56–70)		
Time to initiation of subsequent antineoplastic therapy				
Patients with use — no. (%)	44 (22)	85 (43)		
Median time to use (95% CI) — mo	NR (NR–NR)	18.8 (15.4–NR)	0.40	<0.0001
Time to first symptomatic skeletal event				
Patients with event — no. (%)	36 (18)	45 (23)		
Median time to first event (95% Cl) — mo	NR (33.9–NR)	NR (32.9–NR)	0.69	0.09

NIRAPARIB

Check for updates

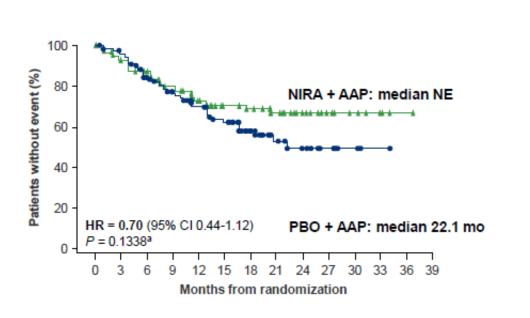

Niraparib Shows Superior Tissue Distribution and Efficacy in a Prostate Cancer Bone Metastasis Model Compared with Other PARP Inhibitors

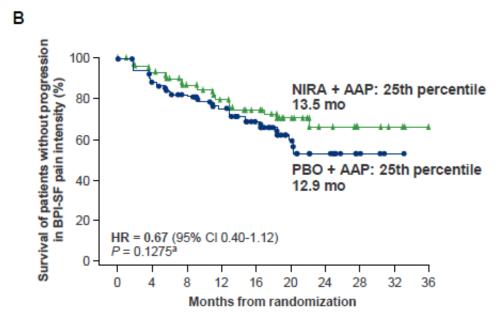
Linda A. Snyder¹, Rajendra Damle¹, Shefali Patel², Jared Bohrer², Anna Fiorella², Jenny Driscoll¹, Rebecca Hawkins¹, Christopher F. Stratton³, Carol D. Manning¹, Kanaka Tatikola⁴, Volha Tryputsen⁵, Kathryn Packman⁶, and Rao N.V.S. Mamidi⁷

ABSTRACT

Patients with prostate cancer whose tumors bear deleterious mutations in DNA-repair pathways often respond to PARP inhibitors. Studies were conducted to compare the activity of several PARP inhibitors *in vitro* and their tissue exposure and *in vivo* efficacy in mice bearing PC-3M-luc-C6 prostate tumors grown subcutaneously or in bone. Niraparib, olaparib, rucaparib, and talazoparib were compared in proliferation assays, using several prostate tumor cell lines and in a cell-free PARP-trapping assay. PC-3M-luc-C6 cells were approximately 12- to 20-fold more sensitive to PARP inhibition than other prostate tumor lines, suggesting that these cells bear a DNA damage repair defect. The tissue exposure and efficacy of these PARP inhibitors were evaluated *in vivo* in PC-3M-luc-C6 subcutaneous and bone metastasis tumor models. A steady-state pharmacokinetic study in PC-3M-luc-C6 tumor-

bearing mice showed that all of the PARP inhibitors had favorable subcutaneous tumor exposure, but <u>niraparib was differentiated by</u> <u>superior bone marrow exposure compared with the other drugs</u>. In a PC-3M-luc-C6 subcutaneous tumor efficacy study, niraparib, olaparib, and talazoparib inhibited tumor growth and increased survival to a similar degree. In contrast, in the PC-3M-luc-C6 bone metastasis model, <u>niraparib showed the most potent inhibition of bone tumor growth compared with the other therapies</u> (67% vs. 40%–45% on day 17), and the best survival improvement over vehicle control [hazard ratio (HR), 0.28 vs. HR, 0.46–0.59] and over other therapies (HR, 1.68–2.16). These results show that niraparib has superior bone marrow exposure and greater inhibition of tumor growth in bone, compared with olaparib, rucaparib, and talazoparib.


NIRAPARIB + ABIRATERONE - mCRPC


Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer

Kim N. Chi, MD¹; Dana Rathkopf, MD²; Matthew R. Smith, MD³; Eleni Efstathiou, MD⁴; Gerhardt Attard, MD⁵; David Olmos, MD⁶; Ji Youl Lee, MD⁷; Eric J. Small, MD⁸; Andrea J. Pereira de Santana Gomes, MD⁹; Guilhem Roubaud, MD¹⁰; Marniza Saad, MD¹¹; Bogdan Zurawski, MD¹²; Valerii Sakalo, MD¹³; Gary E. Mason, MD¹⁴; Peter Francis, MD¹⁵; George Wang, MS, MAS¹⁴; Daphne Wu, PhD¹⁶; Brooke Diorio, PhD¹⁷; Angela Lopez-Gitlitz, MD¹⁶; and Shahneen Sandhu, MD¹⁸; on behalf of the MAGNITUDE Principal Investigators

Bone	183 (86.3)	170 (80.6)	353 (<mark>83,5</mark>)
Lymph node	113 (53.3)	95 (45.0)	208 (49.2)
Visceral	51 (24.1)	39 (18.5)	90 (21.3)
Adrenal gland	3 (1.4)	7 (3.3)	10 (2.4)
Liver	18 (8.5)	13 (6.2)	31 (7.3)
Lung	27 (12.7)	18 (8.5)	45 (10.6)
Other soft tissue	6 (2.8)	15 (7.1)	21 (5.0)

Α

PARP-INHIBITORS

- PARP-inhibitors improve **survival** outcomes of metastatic castration resistant prostate cancer patients (mCRPC) harbouring homologous recombination repair (HRR)/BRCA mutations
- PARP-inhibitors may offer significant benefit in terms of prevention of skeletal-related events (**SREs**) and **pain relief** in mCRPC patients harbouring HRR/BRCA mutations

These data support the use of PARP-inhibitors in the management of mCRPC with bone metastases harbouring HRR/BRCA mutations

Dott. Marco Bergamini

Università degli Studi di Brescia

Oncologia Medica ASST Spedali Civili di Brescia

Sistema Socio Sanitario Regione Lombardia ASST Spedali Civili

Grazie per l'attenzione!!!

CORSO SOCIETÀ ITALIANA DI OSTEONCOLOGIA - ISO

23 APRILE 2024 ROMA ISTITUTO DI STORIA DELLA MEDICINA QUALI STRATEGIE TERAPEUTICHE E QUALI NOVITÀ NELLA GESTIONE DELLE METASTASI OSSEE RESPONSABILI SCIENTIFICI: G. LANZETTA - T. IBRAHIM - D. SANTINI